shop

532 Produkte


  • Ultra Bright Gold Fungia Coral - FG005 - WildCorals
    Ultra Bright Gold Fungia Coral - FG005 - WildCorals
    Ultra Bright Gold Fungia Coral - FG005 - WildCorals
    Ultra Bright Gold Fungia Coral - FG005 - WildCorals

    Ultra Bright Gold Fungia Coral - FG005

    €99,50.00

    SKU: FG005


    Rabatt -50%letzter Artikel! Ultra Bright Gold Fungia Coral - FG005 - WildCorals Ultra Bright Gold Fungia Coral - FG005 - WildCorals

    Ultra Bright Gold Fungia Coral - FG005

    Name: Fungia Temperature: 24-26C Flow: low-mid PAR: 50-150 Water parameters: Nitrate 5-20 mg/l, Phosphate 0,05-0,15 mg/l Feeding: Not required Care level: Easy/Moderated The term Òplate coralsÓ refers to a collection of several different corals from the family Fungiidae. In the hobby the most commonly seen varieties are Fungia, Heliofungia, Diaseris, Cycloseris, and Lithophyllon. In all there are around 13 different genera that make up the family Fungiidae. These corals are flat solitary corals. They sometimes with a single mouth while others have multiple mouths. Most of them take on a circular shape however some varieties take on more irregular shapes such as tongue corals that have an elongated form. On this site, these corals are lumped together in a single category because they can be difficult to tell apart. In some cases, the differences between coral types are more pronounced for example, Lithophyllon for a long time was considered a chalice coral so clearly someone thought it looked different enough to be sorted into a completely separate category of LPS. On the other hand, some genera are close in appearance and extremely challenging to differentiate. For example, I canÕt easily tell the difference between Cycloseris, Fungia, and Danafungia based on the pictures seen online. Also, tongue corals are made up of a few different genera such as Ctenactis and Herpolitha which look practically the same. Confusing the situation a little more is the fact that taxonomy is fluid and coral classification changes as new discoveries are made. Corals get bounced from category to category and it takes years for the reef aquarium industry to adopt the latest nomenclature. Location Plate corals are found throughout the Pacific. The ones most commonly seen in the reef aquarium hobby are sourced from Australia and Indonesia. Lighting When it comes to lighting plate corals are not too demanding. They do well in a wide range of intensities, even fairly low light around 50 PAR. Even in brightly illuminated aquariums, the light they would receive is muted because corals towards the bottom of the tank donÕt get as much light as the corals towards the top of the tank due to the inverse square law. As you move a coral further away from a light source, the intensity is divided by the square of the distance, so if you moving a coral twice as far away from a light source, cuts down the light to one quarter. The light intensity a plate coral receives is further cut down by any cloudiness or opacity in the water or shadings from rock overhangs coral colonies above it. Water Flow As for water flow, plate corals will do fine in medium to low flow. I try to keep them out of high flow areas for two reasons. First, many varieties of plate corals are fleshy and too much flow can damage them. If you see the water flow exerting a lot of pressure on one side of a plate coral to the point where you can start to see the flesh drawn in tonight to the skeleton that is too much flow. One thing to note is the flow at the bottom of the tank where the glass meets the substrate can be an area of stronger flow as the water hits the glass and whips around to the bottom. Just be aware of that in case one of these corals creeps over to the sides of the tank. Feeding Plate corals are photosynthetic so they get nutrients from the products of photosynthesis carried out by symbiotic zooxanthellae living in their flesh. In addition to photosynthesis, these corals are adept feeders that can grab and consume a wide range of foods such as coral-specific sinking pellets and frozen food such as brine shrimp, mysis shrimp, and krill. Despite their appetite there are two things to watch out for if you are looking to feed these corals. The first concern is overfeeding. I have seen some of these corals react poorly if they are fed large quantities every day. I think they need a little bit of time to expel waste from the previous day so here we do not feed them more than 3 times per week. I donÕt know if other aquarists have experienced the same sort of thing but for us we like to play it safe. The second concern with feeding is that certain fish and inverts such as shrimps and crabs can treat these corals like vending machines when they learn they are constantly full of food. I love cleaner shrimp and peppermint shrimp for the utility they provide but as they get larger and more boisterous they can really mess with corals that are fed heavily. In your tank, you will need to pay attention to this dynamic. I love feeding corals and I definitely think that they benefit from it, but it canÕt come at the cost of severe damage from tank-mates. Another option when it comes to feeding that may be effective without the risk of damage from tank-mates is amino acids. I am hearing more and more aquarists that make a concoction of amino acids and fine plankton powders to spot feed corals. That might be a great way to supplement the plate coralÕs nutrition with minimal risk of damage. Ê

    1 auf Lager   SKU: FG005

    1 auf Lager   SKU: FG005

    €199,00€99,50

  • Acanthastrea Lordhowensis - X013 - WildCorals
    Acanthastrea Lordhowensis - X013 - WildCorals

    Acanthastrea Lordhowensis - X013

    €14,50.00

    SKU: X013


    Rabatt -50%letzter Artikel! Acanthastrea Lordhowensis - X013 - WildCorals

    Acanthastrea Lordhowensis - X013

    Name: Acanthastrea (Lordhwensis) Temperature: 24-26C Flow: low-mid PAR: 50-100 Water parameters: Nitrate 5-20 mg/l, Phosphate 0,05-0,15 mg/l Feeding: Ideally to Feed Care level: Easy/Moderated Location Acanthastrea are found all over the Indo-Pacific. They are found throughout the islands of the Indo-pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. Almost all of the Micromussa we have here at WildCorals is from either Indonesia or Australia. Lighting Acanthastrea DO NOT require very much light. In fact, I am willing to bet people tend to struggle a bit with these corals because they are providing too much light. We recommend low to medium light something in the range of 25 to 50 PAR. IÍve seen them in many different types of aquariums under many types of light and the ones in the dimmest seemed to be happiest. Acanthastrea are very responsive to light. So far, we have had success growing them under a variety of lighting conditions, however it is clear that any change in light results in dramatic color differences in the corals themselves. Many corals will adapt their color to the lighting conditions provided, however the extent to which Micromussa can change sets it apart. It is possible for them to turn from a red color to yellow in under 24 hours. It may require significant trial and error with different light profiles to achieve a particular color. It may sound counter-intuitive, but I have had the best color expression in the systems here with very old T5 fluorescents, some which are over a year old. Water Flow As for flow and placement, there are a couple of things I look for. Acanthastrea do not require a ton of flow, so I look to provide just enough so detritus does not settle on them. Most of the time hobbyists place Micros towards the bottom of the tank so it is important that they get enough flow to keep them clean. On the other hand, I think feeding is important for long term health so preferably the flow can slowed during feeding time to allow the coral to grab pieces out of the water column. Feeding Acanthastrea can be fed a mix of meaty foods such as pieces of krill or mysis shrimp. They are relatively small in size so larger pieces of food are not suitable. When I observe Micromussa whether it is lordhowensis or amakusensis, I am looking to see very fat inflated polyps with tentacles constantly extended. We feed a mix of frozen shrimp here at Wild Corals. Our blend is pretty basic, mainly mysis shrimp and krill with a little bit of rotifers. You can also feed a high quality dry coral pellet food, but be careful not to overfeed dry food of any kind because it is possible to burn the coral if too much is fed at once. One particular brand I know recommends something like a single pellet per polyp so if you decide to go that route, less is more.

    1 auf Lager   SKU: X013

    1 auf Lager   SKU: X013

    €29,00€14,50

  • "WC F&P Flaming Sunrise" Acropora Speciosa Frag M Size

    €199.00

    SKU: AC280


    letzter Artikel! "WC F&P Flaming Sunrise" Acropora Speciosa Frag M Size

    "WC F&P Flaming Sunrise" Acropora Speciosa Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC280

    1 auf Lager   SKU: AC280

    €199,00

  • "WC Wonderland Sunrise" Acropora Speciosa Frag M Size

    €199.00

    SKU: AC241


    letzter Artikel! "WC Wonderland Sunrise" Acropora Speciosa Frag M Size

    "WC Wonderland Sunrise" Acropora Speciosa Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC241

    1 auf Lager   SKU: AC241

    €199,00

  • "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    €199.00

    SKU: AC199


    letzter Artikel! "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC199

    1 auf Lager   SKU: AC199

    €199,00

  • "WC F&P Flaming Sunrise" Acropora Speciosa Frag L Size

    €249.00

    SKU: AC147


    letzter Artikel! "WC F&P Flaming Sunrise" Acropora Speciosa Frag L Size

    "WC F&P Flaming Sunrise" Acropora Speciosa Frag L Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC147

    1 auf Lager   SKU: AC147

    €249,00

  • "WC G&G JawDropper" Acropora Loripes Frag M Size

    €129.00

    SKU: AC125


    letzter Artikel! "WC G&G JawDropper" Acropora Loripes Frag M Size

    "WC G&G JawDropper" Acropora Loripes Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC125

    1 auf Lager   SKU: AC125

    €129,00

  • "WC R&Y Flaming Sunrise" Acropora Speciosa Frag M/S Size

    €149.00

    SKU: AC123


    letzter Artikel! "WC R&Y Flaming Sunrise" Acropora Speciosa Frag M/S Size

    "WC R&Y Flaming Sunrise" Acropora Speciosa Frag M/S Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC123

    1 auf Lager   SKU: AC123

    €149,00

  • "WC Y&G Flaming Sunrise" Acropora Speciosa Frag XL Size

    €299.00

    SKU: AC113


    letzter Artikel! "WC Y&G Flaming Sunrise" Acropora Speciosa Frag XL Size

    "WC Y&G Flaming Sunrise" Acropora Speciosa Frag XL Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC113

    1 auf Lager   SKU: AC113

    €299,00

  • "WC R&Y Flaming Sunrise" Acropora Speciosa Frag M/S Size

    €149.00

    SKU: AC074


    letzter Artikel! "WC R&Y Flaming Sunrise" Acropora Speciosa Frag M/S Size

    "WC R&Y Flaming Sunrise" Acropora Speciosa Frag M/S Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC074

    1 auf Lager   SKU: AC074

    €149,00

  • "WC Yellow Submarine" Acropora Selago Frag M Size

    €89.00

    SKU: AC069


    letzter Artikel! "WC Yellow Submarine" Acropora Selago Frag M Size

    "WC Yellow Submarine" Acropora Selago Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC069

    1 auf Lager   SKU: AC069

    €89,00

  • "WC Wonderland Sunrise" Acropora Speciosa Frag M Size

    €199.00

    SKU: AC055


    letzter Artikel! "WC Wonderland Sunrise" Acropora Speciosa Frag M Size

    "WC Wonderland Sunrise" Acropora Speciosa Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC055

    1 auf Lager   SKU: AC055

    €199,00

  • "WC Yellow Submarine" Acropora Selago Frag M/L Size

    €129.00

    SKU: AC040


    letzter Artikel! "WC Yellow Submarine" Acropora Selago Frag M/L Size

    "WC Yellow Submarine" Acropora Selago Frag M/L Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC040

    1 auf Lager   SKU: AC040

    €129,00

  • "WC P&G JawDropper" Acropora Loripes Frag L Size

    €199.00

    SKU: AC034


    letzter Artikel! "WC P&G JawDropper" Acropora Loripes Frag L Size

    "WC P&G JawDropper" Acropora Loripes Frag L Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC034

    1 auf Lager   SKU: AC034

    €199,00

  • "WC Yellow Submarine" Acropora Selago Frag L Size

    €149.00

    SKU: AC028


    letzter Artikel! "WC Yellow Submarine" Acropora Selago Frag L Size

    "WC Yellow Submarine" Acropora Selago Frag L Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC028

    1 auf Lager   SKU: AC028

    €149,00

  • "WC G&G JawDropper" Acropora Loripes Frag M Size

    €149.00

    SKU: AC024


    letzter Artikel! "WC G&G JawDropper" Acropora Loripes Frag M Size

    "WC G&G JawDropper" Acropora Loripes Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC024

    1 auf Lager   SKU: AC024

    €149,00

  • "WC Y&P Flaming Sunrise" Acropora Speciosa Frag M Size

    €149.00

    SKU: AC019


    letzter Artikel! "WC Y&P Flaming Sunrise" Acropora Speciosa Frag M Size

    "WC Y&P Flaming Sunrise" Acropora Speciosa Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC019

    1 auf Lager   SKU: AC019

    €149,00

  • "WC Y&G Flaming Sunrise" Acropora Speciosa Frag S Size

    €129.00

    SKU: AC016


    letzter Artikel! "WC Y&G Flaming Sunrise" Acropora Speciosa Frag S Size

    "WC Y&G Flaming Sunrise" Acropora Speciosa Frag S Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC016

    1 auf Lager   SKU: AC016

    €129,00

  • "WC Y&P Flaming Sunrise" Acropora Speciosa Frag XL Size

    €249.00

    SKU: AC014


    letzter Artikel! "WC Y&P Flaming Sunrise" Acropora Speciosa Frag XL Size

    "WC Y&P Flaming Sunrise" Acropora Speciosa Frag XL Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC014

    1 auf Lager   SKU: AC014

    €249,00

  • "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    €199.00

    SKU: AC012


    letzter Artikel! "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC012

    1 auf Lager   SKU: AC012

    €199,00

  • "WC Lime Flaming Sunrise" Acropora Speciosa Frag M Size

    €129.00

    SKU: AC008


    letzter Artikel! "WC Lime Flaming Sunrise" Acropora Speciosa Frag M Size

    "WC Lime Flaming Sunrise" Acropora Speciosa Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC008

    1 auf Lager   SKU: AC008

    €129,00

  • "WC Y&G Flaming Sunrise" Acropora Speciosa Frag M Size

    €169.00

    SKU: AC003


    letzter Artikel! "WC Y&G Flaming Sunrise" Acropora Speciosa Frag M Size

    "WC Y&G Flaming Sunrise" Acropora Speciosa Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC003

    1 auf Lager   SKU: AC003

    €169,00

  • "WC Y&G Flaming Sunrise" Acropora Speciosa Frag M Size

    €169.00

    SKU: AC002


    letzter Artikel! "WC Y&G Flaming Sunrise" Acropora Speciosa Frag M Size

    "WC Y&G Flaming Sunrise" Acropora Speciosa Frag M Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC002

    1 auf Lager   SKU: AC002

    €169,00

  • "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    €199.00

    SKU: AC001


    letzter Artikel! "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    "WC R&Y Flaming Sunrise" Acropora Speciosa Frag L Size

    Name: AcroporaTemperature: 24-26C Flow: low-mid PAR: 150-250Water parameters: Nitrate 5-10 mg/l, Phosphate 0,05-0,08 mg/l Feeding: They are adept feeders that can grab and consume a wide variety of foods ranging from coral-formulated sinking pellets to frozen food such as brine shrimp, mysis, and krill. Care level: Easy Location Indo-Pacific - Acropora are a genus of small polyp stony corals found in reefs throughout the world including the islands of the Indo-Pacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. They grow branching colonies that take on a variety of forms ranging from stag horns, elk horns, or even flat tables. Acropora are one of the primary reef building corals and are responsible for a large percentage of a reefs structure. Lighting Most coral on the reef are photosynthetic and have some demand for light. Like many corals, Acropora have a special symbiotic relationship with dinoflagellates called zooxanthellae that live inside its tissue. The dinoflagellates are actually the photosynthetic organism and the coral animal consumes the simple sugars that are byproducts of photosynthesis. Zooxanthellae is usually brown in color and the coral tightly regulates the population living in its flesh. Too little light will cause the coral to turn brown in color. As it seeks more nutrition, the coral allows more zooxanthellae to build up in its body. Too much light and Acropora will expel the zooxanthellae making its overall appearance lighter in color. If a coral is particularly stressed it can expel nearly all its zooxanthellae as a last resort and cause unhealthy bleaching. Hobbyists looking to find that _just right” color play with both lighting intensity and spectrum over their tank. There is a misconception in reef keeping that all corals require high lighting. In fact, very few corals need high intensity lighting and in many cases problems arise when there is too much light not too little. Acropora however are one of the few types of coral that are truly light loving. In our systems Acropora have fared best when given light intensity around 300 PAR however there are plenty of successful systems with lighting intensities higher than 500 PAR. Having said that, I don_t recommend blasting newly added Acropora with a ton of light right away. More damage is caused by overexposure to light intensity than not providing enough light so take a couple of weeks to allow the coral to adjust to lighting conditions in your tank. Water Flow Acropora are found in some of the strongest current areas of the reef and benefit greatly from strong water movement in the home aquarium. Water movement is essential for bringing nutrients to coral and more importantly removing waste away from them. Acropora even grow in patterns to adapt to the flow in a given area. For example, Acropora in very strong flow grow thicker and more dense than in tanks with less flow. Some species of Acropora might even take on a stockier shape with fewer long branches in very high flow areas. The growth of the colony in relation to flow also plays a part in their nutrition. They might be growing in such a way to maximize bacterial growth between the branches. One publication that I found interesting was from Coral Reef in 1989 by Schiller and Herndl. Basically it took a look at the interstitial space around certain SPS. They looked at a few different parameters such as ammonia, nitrite, nitrate, phosphorous, and bacteria levels between the branches on the interior of the colony compared to the ambient water column. What they found was that there were lower concentrations of dissolved organics in the interstitial space with an associated uptick in the concentration of bacteria. The corals may be feeding on bacteria directly or indirectly attracting microbe-feeding zooplankton that they then trap and consume, but it is interesting that the corals studied grow in a fashion that optimizes flow through the branches to maximize bacteria farming opportunities. When trying to provide adequate flow there are two things over time that dramatically affect the performance. The first is the growth of the colony itself. Successfully growing Acropora quickly comes with the downside of the coral being a victim of its own success. Large colonies cut down flow significantly and over time choke off flow to other nearby colonies or even to the inner parts of itself. As colonies get larger and larger, it is important as hobbyists to pay close attention to changing flow demands and consider adding more flow or pruning the colony. Secondly, you may notice that there isn't quite as much flow as you once had when everything was freshly installed. Other organisms love to grow in and around the aquariums pumps and plumbing. For this reason I recommend taking apart pumps and powerheads regularly for servicing. It does not take very much growth or blockages to greatly limit water flow output. Water Cleanliness As far as water cleanliness goes, two parameters to keep low are nitrate and phosphate. Elevated phosphates can lead to poor coloration and possible algae issues. Nitrate is an indicator of poor water quality and can cause stony corals to crash altogether if not lowered. The natural sea water levels of nitrate are between 5 ppm and 40 ppm. For Acropora, it is best to be on the lower end of that range. Phosphate levels should be much lower (around .01 ppm) but I would caution hobbyists that are looking to keep those two parameters as close to zero as possible. Nitrate and Phosphate are not bad in and of themselves. Elevated levels of them can cause problems, but they are absolutely required for biological processes in coral and cannot be produced through photosynthesis. Feeding We talked earlier of Acropora nutrition when we talked about lighting, but their requirements extend beyond their relationship with zooxanthellae. Although a high percentage of Acropora nutritional requirements are acquired by photosynthesis, they also benefit from regular feeding for both growth and coloration. There are three great sources of food that work well, amino acids, small zooplankton, and simply having fish present. Starting with amino acids, they are simple organic compounds containing a carboxyl (COOH) group and an amino group (NH2). To quote every high school biology text book, they are the components of proteins that are the building blocks of the cell. In addition to their role building proteins they are also necessary for other biological functions such as neurotransmitter transport and biosynthesis. The amino acids needed vary on a species by species basis but practically speaking it makes little difference in the long run because even if certain amino acids go un-utilized by a certain Acropora they will be taken up quickly by another organism for their biological process.

    1 auf Lager   SKU: AC001

    1 auf Lager   SKU: AC001

    €199,00

  • WC Zoanthus Stratosphere 4 Polyp

    WC Zoanthus Stratosphere 4 Polyp

    €199.00

    SKU: G489


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 4 Polyp

    1 auf Lager   SKU: G489

    1 auf Lager   SKU: G489

    €399,00€199,00

  • WC Zoanthus Stratosphere 5 Polyp

    WC Zoanthus Stratosphere 5 Polyp

    €249.00

    SKU: G443


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 5 Polyp

    1 auf Lager   SKU: G443

    1 auf Lager   SKU: G443

    €499,00€249,00

  • WC Zoanthus Stratosphere 3 Polyp

    WC Zoanthus Stratosphere 3 Polyp

    €149.00

    SKU: G396


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 3 Polyp

    1 auf Lager   SKU: G396

    1 auf Lager   SKU: G396

    €299,00€149,00

  • WC Zoanthus Stratosphere 3 Polyp

    WC Zoanthus Stratosphere 3 Polyp

    €149.00

    SKU: G395


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 3 Polyp

    1 auf Lager   SKU: G395

    1 auf Lager   SKU: G395

    €299,00€149,00

  • WC Zoanthus Stratosphere 5 Polyp

    WC Zoanthus Stratosphere 5 Polyp

    €249.00

    SKU: G367


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 5 Polyp

    1 auf Lager   SKU: G367

    1 auf Lager   SKU: G367

    €499,00€249,00

  • WC Zoanthus Stratosphere 5 Polyp

    WC Zoanthus Stratosphere 5 Polyp

    €249.00

    SKU: G367


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 5 Polyp

    1 auf Lager   SKU: G367

    1 auf Lager   SKU: G367

    €499,00€249,00

  • WC Zoanthus Stratosphere 4 Polyp

    WC Zoanthus Stratosphere 4 Polyp

    €199.00

    SKU: G345


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 4 Polyp

    1 auf Lager   SKU: G345

    1 auf Lager   SKU: G345

    €399,00€199,00

  • WC Zoanthus Stratosphere 4 Polyp

    WC Zoanthus Stratosphere 4 Polyp

    €199.00

    SKU: G341


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 4 Polyp

    1 auf Lager   SKU: G341

    1 auf Lager   SKU: G341

    €399,00€199,00

  • WC Zoanthus Stratosphere 6 Polyp

    WC Zoanthus Stratosphere 6 Polyp

    €299.00

    SKU: G300


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 6 Polyp

    1 auf Lager   SKU: G300

    1 auf Lager   SKU: G300

    €599,00€299,00

  • WC Zoanthus Stratosphere 5 Polyp

    WC Zoanthus Stratosphere 5 Polyp

    €249.00

    SKU: G285


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 5 Polyp

    1 auf Lager   SKU: G285

    1 auf Lager   SKU: G285

    €499,00€249,00

  • WC Zoanthus Stratosphere 4 Polyp

    WC Zoanthus Stratosphere 4 Polyp

    €199.00

    SKU: G263


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 4 Polyp

    1 auf Lager   SKU: G263

    1 auf Lager   SKU: G263

    €399,00€199,00

  • WC Zoanthus Stratosphere 4Polyp

    WC Zoanthus Stratosphere 4Polyp

    €199.00

    SKU: G239


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 4Polyp

    1 auf Lager   SKU: G239

    1 auf Lager   SKU: G239

    €399,00€199,00

  • WC Zoanthus Stratosphere 5 Polyp

    WC Zoanthus Stratosphere 5 Polyp

    €249.00

    SKU: G207


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 5 Polyp

    1 auf Lager   SKU: G207

    1 auf Lager   SKU: G207

    €499,00€249,00

  • WC Zoanthus Stratosphere 4 Polyp

    WC Zoanthus Stratosphere 4 Polyp

    €199.00

    SKU: G185


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 4 Polyp

    1 auf Lager   SKU: G185

    1 auf Lager   SKU: G185

    €399,00€199,00

  • WC Zoanthus Stratosphere 6 Polyp

    WC Zoanthus Stratosphere 6 Polyp

    €299.00

    SKU: G108


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 6 Polyp

    1 auf Lager   SKU: G108

    1 auf Lager   SKU: G108

    €599,00€299,00

  • WC Zoanthus Stratosphere 3 Polyp

    WC Zoanthus Stratosphere 3 Polyp

    €149.00

    SKU: G100


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 3 Polyp

    1 auf Lager   SKU: G100

    1 auf Lager   SKU: G100

    €299,00€149,00

  • WC Zoanthus Stratosphere 5 Polyp

    WC Zoanthus Stratosphere 5 Polyp

    €249.00

    SKU: G066


    Rabatt -50%letzter Artikel! WC Zoanthus Stratosphere 5 Polyp

    1 auf Lager   SKU: G066

    1 auf Lager   SKU: G066

    €499,00€249,00

  • WC Reverse Tiger Torch (Cultured)
    WC Reverse Tiger Torch (Cultured)

    WC Reverse Tiger Torch (Cultured)

    €349.00

    SKU:


    letzter Artikel! WC Reverse Tiger Torch (Cultured) WC Reverse Tiger Torch (Cultured)

    WC Reverse Tiger Torch (Cultured)

    Name: Euphyllia Glabrescens Temperature: 24-26C Flow: low-mid PAR: 50-150 Water parameters: Nitrate 5-20 mg/l, Phosphate 0,05-0,15 mg/l Feeding: No feeding required, but may be fed plankton (e.g. Goldpods) if desired Care level: Easy/Moderated Location Euphyllia like Hammer corals are found all over the tropical waters of the Pacific. In particular, they are regularly harvested from the islands of the Indopacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. Lighting Torch corals are LPS meaning as stony corals, they require consistent levels of calcium, alkalinity, and to a lesser degree magnesium in order to grow their calcium carbonate skeleton. The amount of supplementation needed to maintain calcium, alkalinity, and magnesium depends a lot on the size and growth rate of the stony corals in your tank. Water Flow Moderate to strong water movement is recommended. One of the main draws to this type of LPS coral is how it sways in the current. Water flow is both healthy for the Hammer and is pleasing aesthetically. Water Chemistry Torch corals are LPS meaning as stony corals, they require consistent levels of calcium, alkalinity, and to a lesser degree magnesium in order to grow their calcium carbonate skeleton. The amount of supplementation needed to maintain calcium, alkalinity, and magnesium depends a lot on the size and growth rate of the stony corals in your tank. Agonizing over these levels might be mental overkill for this coral, but it is good to periodically test just to make sure everything is in the ballpark of natural sea water levels. A couple parameters worth paying closer attention to is nitrate and phosphate. LPS corals are sensitive to declining water quality and elevated levels of nitrate and phosphate are an indicator of declining water quality. Low nitrate levels around 5-10ppm are actually welcome for large polyp stony corals, but around 30-40ppm of nitrate you might start running into some issues such as tissue recession. In extreme cases, you might see a torch coral go through full-fledged polyp bailout which we will cover in a little bit. Coral Aggression Corals developed all kinds of adaptations to gain a competitive advantage in the battle for real estate on the reef. In our home aquariums we have to be conscious of these in order to create the best environment for them long term. Euphyllia are one of the corals that extends long sweeper tentacles. Sweeper tentacles are often used as a means of defence against other encroaching coral colonies. Their white tips contain a concentration of nematocysts that can damage more delicate tank mates. Most of the time, this is not a major problem but to be safe, we recommend placing it in a location far from other corals initially. Like most coral, Euphyllia rely to a large extent on the products of their zooxanthellae, however, in our experience, they also benefit from direct feeding. Hammers, torches, and frogspawn do not seem to aggressively feed like other LPS, so finding the right food can be a challenge.

    1 auf Lager   SKU:

    1 auf Lager   SKU:

    €349,00

  • WC Reverse Tiger Torch (Cultured)
    WC Reverse Tiger Torch (Cultured)

    WC Reverse Tiger Torch (Cultured)

    €349.00

    SKU:


    letzter Artikel! WC Reverse Tiger Torch (Cultured) WC Reverse Tiger Torch (Cultured)

    WC Reverse Tiger Torch (Cultured)

    Name: Euphyllia Glabrescens Temperature: 24-26C Flow: low-mid PAR: 50-150 Water parameters: Nitrate 5-20 mg/l, Phosphate 0,05-0,15 mg/l Feeding: No feeding required, but may be fed plankton (e.g. Goldpods) if desired Care level: Easy/Moderated Location Euphyllia like Hammer corals are found all over the tropical waters of the Pacific. In particular, they are regularly harvested from the islands of the Indopacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. Lighting Torch corals are LPS meaning as stony corals, they require consistent levels of calcium, alkalinity, and to a lesser degree magnesium in order to grow their calcium carbonate skeleton. The amount of supplementation needed to maintain calcium, alkalinity, and magnesium depends a lot on the size and growth rate of the stony corals in your tank. Water Flow Moderate to strong water movement is recommended. One of the main draws to this type of LPS coral is how it sways in the current. Water flow is both healthy for the Hammer and is pleasing aesthetically. Water Chemistry Torch corals are LPS meaning as stony corals, they require consistent levels of calcium, alkalinity, and to a lesser degree magnesium in order to grow their calcium carbonate skeleton. The amount of supplementation needed to maintain calcium, alkalinity, and magnesium depends a lot on the size and growth rate of the stony corals in your tank. Agonizing over these levels might be mental overkill for this coral, but it is good to periodically test just to make sure everything is in the ballpark of natural sea water levels. A couple parameters worth paying closer attention to is nitrate and phosphate. LPS corals are sensitive to declining water quality and elevated levels of nitrate and phosphate are an indicator of declining water quality. Low nitrate levels around 5-10ppm are actually welcome for large polyp stony corals, but around 30-40ppm of nitrate you might start running into some issues such as tissue recession. In extreme cases, you might see a torch coral go through full-fledged polyp bailout which we will cover in a little bit. Coral Aggression Corals developed all kinds of adaptations to gain a competitive advantage in the battle for real estate on the reef. In our home aquariums we have to be conscious of these in order to create the best environment for them long term. Euphyllia are one of the corals that extends long sweeper tentacles. Sweeper tentacles are often used as a means of defence against other encroaching coral colonies. Their white tips contain a concentration of nematocysts that can damage more delicate tank mates. Most of the time, this is not a major problem but to be safe, we recommend placing it in a location far from other corals initially. Like most coral, Euphyllia rely to a large extent on the products of their zooxanthellae, however, in our experience, they also benefit from direct feeding. Hammers, torches, and frogspawn do not seem to aggressively feed like other LPS, so finding the right food can be a challenge.

    1 auf Lager   SKU:

    1 auf Lager   SKU:

    €349,00

  • WC Black Tiger Torch (Cultured)
    WC Black Tiger Torch (Cultured)

    WC Black Tiger Torch (Cultured)

    €349.00

    SKU:


    letzter Artikel! WC Black Tiger Torch (Cultured) WC Black Tiger Torch (Cultured)

    WC Black Tiger Torch (Cultured)

    Name: Euphyllia Glabrescens Temperature: 24-26C Flow: low-mid PAR: 50-150 Water parameters: Nitrate 5-20 mg/l, Phosphate 0,05-0,15 mg/l Feeding: No feeding required, but may be fed plankton (e.g. Goldpods) if desired Care level: Easy/Moderated Location Euphyllia like Hammer corals are found all over the tropical waters of the Pacific. In particular, they are regularly harvested from the islands of the Indopacific including Fiji, Tonga, Solomon Islands, and the Great Barrier Reef. Lighting Torch corals are LPS meaning as stony corals, they require consistent levels of calcium, alkalinity, and to a lesser degree magnesium in order to grow their calcium carbonate skeleton. The amount of supplementation needed to maintain calcium, alkalinity, and magnesium depends a lot on the size and growth rate of the stony corals in your tank. Water Flow Moderate to strong water movement is recommended. One of the main draws to this type of LPS coral is how it sways in the current. Water flow is both healthy for the Hammer and is pleasing aesthetically. Water Chemistry Torch corals are LPS meaning as stony corals, they require consistent levels of calcium, alkalinity, and to a lesser degree magnesium in order to grow their calcium carbonate skeleton. The amount of supplementation needed to maintain calcium, alkalinity, and magnesium depends a lot on the size and growth rate of the stony corals in your tank. Agonizing over these levels might be mental overkill for this coral, but it is good to periodically test just to make sure everything is in the ballpark of natural sea water levels. A couple parameters worth paying closer attention to is nitrate and phosphate. LPS corals are sensitive to declining water quality and elevated levels of nitrate and phosphate are an indicator of declining water quality. Low nitrate levels around 5-10ppm are actually welcome for large polyp stony corals, but around 30-40ppm of nitrate you might start running into some issues such as tissue recession. In extreme cases, you might see a torch coral go through full-fledged polyp bailout which we will cover in a little bit. Coral Aggression Corals developed all kinds of adaptations to gain a competitive advantage in the battle for real estate on the reef. In our home aquariums we have to be conscious of these in order to create the best environment for them long term. Euphyllia are one of the corals that extends long sweeper tentacles. Sweeper tentacles are often used as a means of defence against other encroaching coral colonies. Their white tips contain a concentration of nematocysts that can damage more delicate tank mates. Most of the time, this is not a major problem but to be safe, we recommend placing it in a location far from other corals initially. Like most coral, Euphyllia rely to a large extent on the products of their zooxanthellae, however, in our experience, they also benefit from direct feeding. Hammers, torches, and frogspawn do not seem to aggressively feed like other LPS, so finding the right food can be a challenge.

    1 auf Lager   SKU:

    1 auf Lager   SKU:

    €349,00

  • WC Reverse Tiger Torch (Cultured)
    WC Reverse Tiger Torch (Cultured)

    WC Reverse Tiger Torch (Cultured)

    €349.00

    SKU: